Identification of Structurally Damaged Areas in Airborne Oblique Images Using a Visual-Bag-of-Words Approach

نویسندگان

  • Anand Vetrivel
  • Markus Gerke
  • Norman Kerle
  • George Vosselman
چکیده

Automatic post-disaster mapping of building damage using remote sensing images is an important and time-critical element of disaster management. The characteristics of remote sensing images available immediately after the disaster are not certain, since they may vary in terms of capturing platform, sensor-view, image scale, and scene complexity. Therefore, a generalized method for damage detection that is impervious to the mentioned image characteristics is desirable. This study aims to develop a method to perform grid-level damage classification of remote sensing images by detecting the damage corresponding to debris, rubble piles, and heavy spalling within a defined grid, regardless of the aforementioned image characteristics. The Visual-Bag-of-Words (BoW) is one of the most widely used and proven frameworks for image classification in the field of computer vision. The framework adopts a kind of feature representation strategy that has been shown to be more efficient for image classification—regardless of the scale and clutter—than conventional global feature representations. In this study supervised models using various radiometric descriptors (histogram of gradient orientations (HoG) and Gabor wavelets) and classifiers (SVM, Random Forests, and Adaboost) were developed for damage classification based on both BoW and conventional global feature representations, and tested with four datasets. Those vary according to the aforementioned image characteristics. The BoW framework outperformed conventional global feature representation approaches in all scenarios (i.e., for all combinations of feature descriptors, classifiers, and datasets), and produced an average accuracy of approximately 90%. Particularly encouraging was an accuracy improvement by 14% (from 77% to 91%) produced by BoW over global representation for the most complex dataset, which was used to test the generalization capability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features

Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...

متن کامل

A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features

Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...

متن کامل

Palarimetric Synthetic Aperture Radar Image Classification using Bag of Visual Words Algorithm

Land cover is defined as the physical material of the surface of the earth, including different vegetation covers, bare soil, water surface, various urban areas, etc. Land cover and its changes are very important and influential on the Earth and life of living organisms, especially human beings. Land cover change monitoring is important for protecting the ecosystem, forests, farmland, open spac...

متن کامل

Detecting Damaged Building Regions Based on Semantic Scene Change from Multi-Temporal High-Resolution Remote Sensing Images

The detection of damaged building regions is crucial to emergency response actions and rescue work after a disaster. Change detection methods using multi-temporal remote sensing images are widely used for this purpose. Differing from traditional methods based on change detection for damaged building regions, semantic scene change can provide a new point of view since it can indicate the land-us...

متن کامل

Navigation in Dense Human Crowds Using Smartphone Trajectories and Optical Aerial Imagery

In this paper, we propose a navigation system for smartphones which enables visitors of very large events to avoid crowded areas or narrow streets and to navigate out of a dense crowd quickly. Therefore, two types of sensor data are integrated. First, optical images acquired and transmitted by an airborne camera system are used to compute an estimation of a crowd density map. For this purpose, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Remote Sensing

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2016